300. 最长递增子序列
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
提示:
1 <= nums.length <= 2500
-10^4 <= nums[i] <= 10^4
进阶:
- 你能将算法的时间复杂度降低到
O(n log(n))
吗?
解法
dp[i]
表示以 nums[i]
结尾的最长递增子序列的长度,只要获取 i
之前比 nums[i]
小的最大子序列长度再加一就是以 nums[i]
结尾的最大子序列长度。
class Solution {
public int lengthOfLIS(int[] nums) {
if (nums.length <= 1) {
return nums.length;
}
int[] dp = new int[nums.length];
// 先全部填充1,因为最小长度就是自身一个元素
Arrays.fill(dp, 1);
int maxLen = 1;
for (int i = 1; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
maxLen = Math.max(maxLen, dp[i]);
}
}
}
return maxLen;
}
}