150. 逆波兰表达式求值
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +
、-
、*
、/
。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
- 整数除法只保留整数部分。
- 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i]
要么是一个算符("+"
、"-"
、"*"
或"/"
),要么是一个在范围[-200, 200]
内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
思路
利用栈,遇到数字压入,遇到运算符则弹出两个数据运算后在压入结果
public static int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < tokens.length; i++) {
//是数字
if (isNum(tokens[i])) {
stack.push(Integer.valueOf(tokens[i]));
continue;
}
//是运算符
char cur = tokens[i].charAt(0);
if (cur == '+') {
stack.push(stack.pop() + stack.pop());
} else if (cur == '-') {
stack.push(-stack.pop() + stack.pop());
} else if (cur == '*') {
stack.push(stack.pop() * stack.pop());
} else {
int m = stack.pop();
int n = stack.pop();
stack.push(n / m);
}
}
return stack.pop();
}
public static boolean isNum(String str) {
return str.length() > 1 || str.charAt(0) >= '0' && str.charAt(0) <= '9';
}